Hyperspectral fluorescence microscopy based on Compressive Sampling

نویسندگان

  • Makhlad Chahid
  • Jérôme Bobin
  • Hamed Shams Mousavi
  • Emmanuel J. Candès
  • Maxime Dahan
  • Vincent Studer
چکیده

The mathematical theory of compressed sensing (CS) asserts that one can acquire signals from measurements whose rate is much lower than the total bandwidth. Whereas the CS theory is now well developed, challenges concerning hardware implementations of CS-based acquisition devices—especially in optics—have only started being addressed. This paper presents an implementation of compressive sensing in fluorescence microscopy and its applications to biomedical imaging. Our CS microscope combines a dynamic structured wide-field illumination and a fast and sensitive single-point fluorescence detection to enable reconstructions of images of fluorescent beads, cells, and tissues with undersampling ratios (between the number of pixels and number of measurements) up to 32. We further demonstrate a hyperspectral mode and record images with 128 spectral channels and undersampling ratios up to 64, illustrating the potential benefits of CS acquisition for higher-dimensional signals, which typically exhibits extreme redundancy. Altogether, our results emphasize the interest of CS schemes for acquisition at a significantly reduced rate and point to some remaining challenges for CS fluorescence microscopy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressive fluorescence microscopy for biological and hyperspectral imaging.

The mathematical theory of compressed sensing (CS) asserts that one can acquire signals from measurements whose rate is much lower than the total bandwidth. Whereas the CS theory is now well developed, challenges concerning hardware implementations of CS-based acquisition devices--especially in optics--have only started being addressed. This paper presents an implementation of compressive sensi...

متن کامل

Compressive hyperspectral imaging via adaptive sampling and dictionary learning

In this paper, we propose a new sampling strategy for hyperspectral signals that is based on dictionary learning and singular value decomposition (SVD). Specifically, we first learn a sparsifying dictionary from training spectral data using dictionary learning. We then perform an SVD on the dictionary and use the first few left singular vectors as the rows of the measurement matrix to obtain th...

متن کامل

Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy

A snapshot Image Mapping Spectrometer (IMS) with high sampling density is developed for hyperspectral microscopy, measuring a datacube of dimensions 285 x 285 x 60 (x, y, lambda). The spatial resolution is approximately 0.45 microm with a FOV of 100 x 100 microm(2). The measured spectrum is from 450 nm to 650 nm and is sampled by 60 spectral channels with average sampling interval approximately...

متن کامل

Compressive Sensing and Hyperspectral Imaging

Compressive sensing (sampling) is a novel technology and science domain that exploits the option to sample radiometric and spectroscopic signals at a lower sampling rate than the one dictated by the traditional theory of ideal sampling. In the paper some general concepts and characteristics regarding the use of compressive sampling in instruments devoted to Earth observation is discussed. The r...

متن کامل

Spatial versus spectral compression ratio in compressive sensing of hyperspectral imaging

Compressive hyperspectral imaging is based on the fact that hyperspectral data is highly redundant. However, there is no symmetry between the compressibility of the spatial and spectral domains, and that should be taken into account for optimal compressive hyperspectral imaging system design. Here we present a study of the influence of the ratio between the compression in the spatial and spectr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1307.4610  شماره 

صفحات  -

تاریخ انتشار 2013